Cystathionine β-synthase (CBS) domains 1 and 2 fulfill different roles in ionic strength sensing of the ATP-binding cassette (ABC) transporter OpuA.

نویسندگان

  • Akira Karasawa
  • Guus B Erkens
  • Ronnie P-A Berntsson
  • Renee Otten
  • Gea K Schuurman-Wolters
  • Frans A A Mulder
  • Bert Poolman
چکیده

The cystathionine β-synthase module of OpuA in conjunction with an anionic membrane surface acts as a sensor of internal ionic strength, which allows the protein to respond to osmotic stress. We now show by chemical modification and cross-linking studies that CBS2-CBS2 interface residues are critical for transport activity and/or ionic regulation of transport, whereas CBS1 serves no functional role. We establish that Cys residues in CBS1, CBS2, and the nucleotide-binding domain are more accessible for cross-linking at high than low ionic strength, indicating that these domains undergo conformational changes when transiting between the active and inactive state. Structural analyses suggest that the cystathionine β-synthase module is largely unstructured. Moreover, we could substitute CBS1 by a linker and preserve ionic regulation of transport. These data suggest that CBS1 serves as a linker and the structured CBS2-CBS2 interface forms a hinge point for ionic strength-dependent rearrangements that are transmitted to the nucleotide-binding domain and thereby affect translocation activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A sensor for intracellular ionic strength.

Cystathionine-beta-synthase (CBS) domains are found in >4,000 proteins in species from all kingdoms of life, yet their functions are largely unknown. Tandem CBS domains are associated with membrane transport proteins, most notably members of the ATP-binding cassette (ABC) superfamily; voltage-gated chloride channels and transporters; cation efflux systems; and various enzymes, transcription fac...

متن کامل

Ion specificity and ionic strength dependence of the osmoregulatory ABC transporter OpuA.

The ATPase subunit of the osmoregulatory ATP-binding cassette transporter OpuA from Lactococcus lactis has a C-terminal extension, the tandem cystathionine beta-synthase (CBS) domain, which constitutes the sensor that allows the transporter to sense and respond to osmotic stress (Biemans-Oldehinkel, E., Mahmood, N. A. B. N., and Poolman, B. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 10624-1062...

متن کامل

Monitoring conformational changes during the catalytic cycle of OpuAA, the ATPase subunit of the ABC transporter OpuA from Bacillus subtilis.

The ABC transporter (ATP-binding-cassette transporter) OpuA is one of five membrane transport systems in Bacillus subtilis that mediate osmoprotection by importing compatible solutes. Just like all bacterial and archaeal ABC transporters that catalyse the import of substrates, OpuA (where Opu is osmoprotectant uptake) is composed of an ATPase subunit (OpuAA), a transmembrane subunit (OpuAB) and...

متن کامل

The ATP/substrate stoichiometry of the ATP-binding cassette (ABC) transporter OpuA.

ATP-binding cassette (ABC) transport proteins catalyze the translocation of substrates at the expense of hydrolysis of ATP, but the actual ATP/substrate stoichiometry is still controversial. In the osmoregulated ABC transporter (OpuA) from Lactococcus lactis, ATP hydrolysis and substrate translocation are tightly coupled, and the activity of right-side-in and inside-out reconstituted OpuA can b...

متن کامل

The role of ATP-binding cassette transporter A2 in childhood acute lymphoblastic leukemia multidrug resistance

Acute lymphoblastic leukemia (ALL) is one of the most prevalent hematologic malignancies in children. Although the cure rate of ALL has improved over the past decades, the most important reason for ALL treatment failure is multidrug resistance (MDR) phenomenon. The current study aims to explain the mechanisms involved in multidrug resistance of childhood ALL, and introduces ATP-binding cassette...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 43  شماره 

صفحات  -

تاریخ انتشار 2011